#68ab R8BS 2 $03 s

Deep Learning
14 Encoder-Decoder Models & Attention

Dr. Konda Reddy Mopuri
Dept. of Al, lIT Hyderabad

Jan-May 2024

Dr. Konda Reddy Mopuri dl - 14/ Encoder-Decoder Models & Attention 1


https://krmopuri.github.io/

26bab 0888 dend H0% PaTenl
Indian Institute of Technology Hyderabad

Sequence-to-sequence Models

o I/pis a sequence: X1, Xo,..., XN

Dr. Konda Reddy Mopuri dl - 14/ Encoder-Decoder Models & Attention 2



26bab 0888 dend H0% PaTenl
Indian Institute of Technology Hyderabad

Sequence-to-sequence Models

o I/pis a sequence: X1, Xo,..., XN
o O/pis a sequence: Y1,Ya,..., Yy

Dr. Konda Reddy Mopuri dl - 14/ Encoder-Decoder Models & Attention 2



mﬂﬂ}ﬁﬂﬂwﬁ

Sequence-to-sequence Models “ s

o I/pis a sequence: X1, Xo,..., XN
o O/pis a sequence: Y1,Ya,..., Yy
o ASR: Speech i/p — word sequence

Dr. Konda Reddy Mopuri dl - 14/ Encoder-Decoder Models & Attention 2



26bab 0888 dend H0% PaTenl

Indian Institute of Technology Hyderabad

Sequence-to-sequence Models

o |/pis a sequence: X1, Xo,..., XN
o O/pis a sequence: Y1,Ya,..., Yy

o ASR: Speech i/p — word sequence
o Machine Translation: word sequence— word sequence

Dr. Konda Reddy Mopuri dl - 14/ Encoder-Decoder Models & Attention 2



26bab 0888 dend H0% PaTenl

Indian Institute of Technology Hyderabad

Sequence-to-sequence Models

o |/pis a sequence: X1, Xo,..., XN
o O/pis a sequence: Y1,Ya,..., Yy
o ASR: Speech i/p — word sequence

o Machine Translation: word sequence— word sequence
o Dialog: user statement — system response
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Sequence-to-sequence Models

o |/pis a sequence: X1, Xo,..., XN
o O/pis a sequence: Y1,Ya,..., Yy

o ASR: Speech i/p — word sequence

o Machine Translation: word sequence— word sequence
o Dialog: user statement — system response

o Question Answering: Question i/p — Answer
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Sequence-to-sequence Models

o No synchrony between X and Y (M # N)
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Sequence-to-sequence Models " s

o No synchrony between X and Y (M # N)

o May not even maintain the order of the symbols
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o May not even maintain the order of the symbols

o O/p symbols may not seem related to i/p

Dr. Konda Reddy Mopuri dl - 14/ Encoder-Decoder Models & Attention 3



26bab 0888 dend H0% PaTenl
Indian Institute of Technology Hyderabad

Sequence-to-sequence Models

(*]

No synchrony between X and Y (M # N)

May not even maintain the order of the symbols

(]

©

O/p symbols may not seem related to i/p

©

E.g., The check | issued could not be encashed. — Did you check the
balance in your account?
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Naturalism and decision for the majority of Arab countries' capitalide was grounded
by the Irish language by [[John Clair]], [[An Imperial Japanese Revolt]], associated
with Guangzham's sovereignty. His generals were the powerful ruler of the Portugal
in the [[Protestant Immineners]], which could be said to be directly in Cantonese
Communication, which followed a ceremony and set inspired prison, training. The
emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Kingdom

of Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known

in western [[Scotland]], near Italy to the conquest of India with the conflict.
Copyright was the succession of independence in the slop of Syrian influence that
was a famous German movement based on a more popular servicious, non-doctrinal

and sexual power post. Many governments recognize the military housing of the
[[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]],

that is sympathetic to be to the [[Punjab Resolution]]
(PIS)[http://www.humah.yahoo.com/guardian.

cfm/7754800786d17551963589.htm Official economics Adjoint for the Nazism, Montgomery
was swear to advance to the resources for those Socialism's rule,

was starting to signing a major tripad of aid exile.]]

Figure: Andrej Karpathy
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Language Model

o Models the probability of token sequences in the language(of
characters or words)
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Language Model

o Models the probability of token sequences in the language(of
characters or words)
o Can
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Language Model W

o Models the probability of token sequences in the language(of
characters or words)
o Can
o Compute the probability of a given token sequence
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Language Model W

o Models the probability of token sequences in the language(of
characters or words)
o Can

o Compute the probability of a given token sequence
o Generate sequences from the distribution of language
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o p(y1,y2, Y3, Ya, - )
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Language Model

o p(yla Y2,Y3,Y4, - - )
o Use Baye's rule to compute this incrementally
p(y1) - p(y2/y1) - p(ys/Y1,y2) - p(ys/y1, y2,y3) - - -
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Language Model | [

° p(y1,Y2,Y3: Y4, .- .)

o Use Baye's rule to compute this incrementally
p(y1) - p(y2/y1) - p(ys/Y1,y2) - p(ys/y1, y2,y3) - - -

o They perform next token prediction
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@ y* = argmax P(y:/y1,y2 - - Y1)
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Language Model |

@ y* = argmax P(yt/y1,y2- .- Yt—1)
@ We have an NN (e.g. RNN or LSTM) first consuming the i/p
sequence (y!™1) — representation for the context
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Language Model

@ y* = argmax P(yt/y1,y2- .- Yt—1)
@ We have an NN (e.g. RNN or LSTM) first consuming the i/p
sequence (y!™1) — representation for the context

@ Then, predict the probability distribution P(y:/y1,y2 ... yt—1) over
the vocabulary
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Language Model

V| tokens
d-sized i
vector Q
Transform h linearly Linear Ef softmax
fromsize dto V| - the ey :
vocabulary size 8
o)

Neural network

©000

I saw a cat on a

Dr. Konda Reddy Mopuri

:vector representation of
contextI saw a cat ona

Input word embeddings

Credits: Elena Voita

P(*|I saw a cat ona)
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get probability
distribution for
the next token

process context
(previous history)
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Language Model D

Credits: TensorFlow
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https://www.tensorflow.org/text/tutorials/text_generation
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o When do we stop?
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Language Model

o When do we stop?

o Add two additional tokens to the vocabulary
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Language Model

o When do we stop?
o Add two additional tokens to the vocabulary
0 <sos>: start of the sequence

o <eos>: end of the sequence

Dr. Konda Reddy Mopuri dl - 14/ Encoder-Decoder Models & Attention 11



z:-oécm 0385 e 09 PpoTens
Language Model | Esaon

morning <eos>

7
o444

<sos> morgen s0s> morning

Credits: PyTorch
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https://discuss.pytorch.org/t/transformer-mask-doesnt-do-anything/79765
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Encoder-Decoder Framework “ ks

@ Standard modeling paradigm for sequence-to-sequence tasks
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Encoder-Decoder Framework " s

@ Standard modeling paradigm for sequence-to-sequence tasks

@ Consists of two components: Encoder and Decoder
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Encoder-Decoder Framework

@ Encoder: reads source . Target sentence
i |
sequence to produce its ‘ Lswwa “"T o mat ceos

N

Encoder ‘*» ‘ Decoder

representation

T Decoder uses this source
A suAen KOTO Ha Mare <eos> representation to generate

I""saw” “cat” "on” "mat’ the target sentence

Credits: Elena Voita
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Encoder-Decoder Framework

@ Encoder: reads source } Target sentence
-
sequence to produce its Lswwa “"T o mat ceos
: N\

representation Encoder ‘*,‘ Decoder

@ DeCOder uses the source T Decoder uses this source
representation given by the T™sou” cat” ot mat” P e target sentonce
encoder to infer the target R
sequence Credits: Elena Voita
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Encoder-Decoder Model

@ Language modeling learns p(y), where y = (y1,y2,...Yn) is a
sequence of tokens
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Encoder-Decoder Model

@ Language modeling learns p(y), where y = (y1,y2,...Yn) is a
sequence of tokens

@ Seq2Seq need to model the conditional probability p(y/x) of a
sequence y given a sequence = (source or context)
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Encoder-Decoder Model

@ Language modeling learns p(y), where y = (y1,y2,...Yn) is a
sequence of tokens

@ Seq2Seq need to model the conditional probability p(y/x) of a
sequence y given a sequence = (source or context)

@ Note that x need not be a sequence always (e.g. image in captioning)
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@ Hence, Seq2Seq tasks can be modelled as conditional language
models

n
Language Models:  P(y, y,, ..., y,) = np(ytlyq)

t=1

Conditional

Language Models: P(ylyz,_ ,yn,/|x) np(yt|y<t,x)
t=1

condition on source x

Credits: Elene Voita
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Encoder-Decoder Model

@ Basis for a lot of applications

]
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Dr. Konda Reddy Mopuri

Image (or video) captioning
Textual entailment

Machine translation
Transliteration

Document summarization

VQA: Visual Question Answering
Video classification

Chatbot for dialog

dl - 14/ Encoder-Decoder Models & Attention
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Encoder-Decoder Model

@ Basis for a lot of applications

]

© © 06 © © © ©

Image (or video) captioning
Textual entailment

Machine translation
Transliteration

Document summarization

VQA: Visual Question Answering
Video classification

Chatbot for dialog

@ Let's consider machine translation...

Dr. Konda Reddy Mopuri

dl - 14/ Encoder-Decoder Models & Attention
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Encoder-Decoder Model

o Simplest model is having two RNNs

Encoder

Jopep J8poous

Decoder

X1

Credits: Simeon Kostadinov
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https://towardsdatascience.com/understanding-encoder-decoder-sequence-to-sequence-model-679e04af4346
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Encoder-Decoder for Machine Translation Ill|

Input sequence: x. %

]

Output sequence: y,, y,, ... Yr.

Encoder: h, = E(x,h,,)

Sequence to sequence learning by Sutskever et al. NeurlPS 2014
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https://arxiv.org/abs/1409.3215
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o Hope is that
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o Hope is that
o Final encoder state ‘encodes’ all the information about the source
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o8ad Modas e %08 el
Encoder-Decoder for Machine Translation Il o gy i

o Hope is that

o Final encoder state ‘encodes’ all the information about the source
o This vector is sufficient for the decoder to generate the target sentence
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Encoder-Decoder for Machine Translation

o Representations of sentences with similar meaning but different
structure are close!

A * OT was given a card by her in the garden
J[ ©Mary admires John I o Inthe garden, she gave me a card
o “Mary s inlove with John | © She gave me a card in the garden
i
o .
_,| ©John admires Mary © Mary respects John
s o
o o Johnis inlove with Mary R She was given a card by me in the garden
©1In the garden, T gave her a card
B o
4
15 ,
| ©John respects Mary © 1T gave her a card in the garden
% s 4 2 o 2z 4 s 8 1w % 0 S o 5 0 [

Sequence to sequence learning by Sutskever et al. NeurlPS 2014
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https://arxiv.org/abs/1409.3215

Encoder-Decoder for Machine Translation

Last hidden state h, — Initial state of the Decoder
T S, and the context information C
E.g. S; < h; +denselayers, and C < h_

Input sequence: x. %

10 Kgrom

Output sequence: y,, y,, ... Yr.

Encoder: h, = E(x,h,,)

Sequence to sequence learning by Sutskever et al. NeurlPS 2014
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Encoder-Decoder for Machine Translation

Last hidden state h, — Initial state of the Decoder
T S, and the context information C
E.g. S; < h; +denselayers, and C < h_

Input sequence: X,, X,, ... X

Output sequence: y,, y,, ... Yr.

Decoder: s, = D(y, ,.S,,.C)

Encoder: h, = E(x,h,,)

Sequence to sequence learning by Sutskever et al. NeurlPS 2014
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Encoder-Decoder for Machine Translation

Last hidden state h, — Initial state of the Decoder
T S, and the context information C
E.g. S; < h; +denselayers, and C < h_

Input sequence: X,, X,, ... X

Output sequence: y,, y,, ... Yr.

Decoder: s, = D(y, ,.S,,.C)

Jaanu is

Encoder: h, = E(x,h,,)

[START] Jaanu

Sequence to sequence learning by Sutskever et al. NeurlPS 2014
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Encoder-Decoder for Machine Translation

Last hidden state h, — Initial state of the Decoder
T S, and the context information C
E.g. S; < h; +denselayers, and C < h_

Input sequence: X,, X,, ... X

Output sequence: y,, y,, ... Yr.

Decoder: s, = D(y, ,.S,,.C)

Jaanu is a

Encoder: h, = E(x,h,,)

[START] Jaanu is

Sequence to sequence learning by Sutskever et al. NeurlPS 2014
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Encoder-Decoder for Machine Translation

Last hidden state h, — Initial state of the Decoder
T S, and the context information C
E.g. S; < h; +denselayers, and C < h_

Input sequence: X,, X,, ... X

Output sequence: y,, y,, ... Yr.

Decoder: s, = D(y, ,.S,,.C)

is a clever

Encoder: h, = E(x,h,,)

[START] Jaanu is a

Sequence to sequence learning by Sutskever et al. NeurlPS 2014
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Encoder-Decoder for Machine Translation

Last hidden state h, — Initial state of the Decoder
T S, and the context information C
E.g. S; < h; +denselayers, and C < h_

Input sequence: X,, X,, ... X

Output sequence: y,, y,, ... Yr.

Decoder: s, = D(y, ,.S,,.C)

Jaanu is a clever girl

Encoder: h, = E(x,h,,)

[START] Jaanu is a clever

Sequence to sequence learning by Sutskever et al. NeurlPS 2014
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Encoder-Decoder for Machine Translation

Last hidden state h, — Initial state of the Decoder
T S, and the context information C
E.g. S; < h; +denselayers, and C < h_

Input sequence: X,, X,, ... X

Output sequence: y,, y,, ... Yr.

Decoder: s, = D(y, ,.S,,.C)

Jaanu is a clever girl [END]

Encoder: h, = E(x,h,,)

[START] Jaanu is a clever girl

Sequence to sequence learning by Sutskever et al. NeurlPS 2014
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@ Encoder got only a single vector to encode the entire source sequence
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@ Encoder got only a single vector to encode the entire source sequence

@ Harsh compression, may lead to encoder forgetting something!
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Encoder-Decoder for Machine Translation Il o gy i

@ Encoder got only a single vector to encode the entire source sequence
@ Harsh compression, may lead to encoder forgetting something!

@ Different information may be relevant for the decoder at different
time steps
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Encoder-Decoder for Machine Translation

Last hidden state h, — Initial state of the Decoder
T S, and the context information C
E.g. S; < h; +denselayers, and C < h_

Input sequence: X,, X,, ... X

Output sequence: y,, y,, ... Yr.

Decoder: s, = D(y, ,.S,,.C)

clever girl [END]

Encoder: h, = E(x,h,,)

[START] Jaanu is a clever girl

Bottleneck: Entire input is summarized by this vector!

Sequence to sequence learning by Sutskever et al. NeurlPS 2014
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Encoder-Decoder for Machine Translation

Last hidden state h, — Initial state of the Decoder
T S, and the context information C
E.g. S; < h; +denselayers, and C < h_

Input sequence: X,, X,, ... X

Output sequence: y,, y,, ... Yr.

Decoder: s, = D(y, ,.S,,.C)

is a clever girl [END]

Encoder: h, = E(x,h,,)

[START] Jaanu is a clever girl

Solution: use different context at each time step!

Sequence to sequence learning by Sutskever et al. NeurlPS 2014
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Encoder-Decoder for Machine Translation with Attention- -

Input sequence: X, X,, .... X

Input sequence: y,, y,, ... Y.

Encoder: h, = E(x,h,,)

1
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Encoder-Decoder for Machine Translation with Attentiory:: sy

Compute the alignment scores

e, = fu(s.h) f, - couple of dense layers

Neural Machine Translation with aligning by Bahdanau et al. ICLR 2015
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Encoder-Decoder for Machine Translation with Attentiory:: sy

Compute the alignment scores

e, = fu(s.h) f, - couple of dense layers

Neural Machine Translation with aligning by Bahdanau et al. ICLR 2015
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Encoder-Decoder for Machine Translation with Attentiory:: sy

4 ) [} Compute the alignment scores
% e, = fu(s.h) f, - couple of dense layers
a a Compute the context as a linear combination of
12 12 intermediate hidden states
Cl = El al,( < h(

h

A\
1

1

1

Neural Machine Translation with aligning by Bahdanau et al. ICLR 2015
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Encoder-Decoder for Machine Translation with Attentiory:: sy

Compute the alignment scores
e, = fu(s.h) f, - couple of dense layers

Compute the context as a linear combination of
intermediate hidden states
Cl = El al,( < h(

Decoder: s, = D(y,,,C,)

[START]

Neural Machine Translation with aligning by Bahdanau et al. ICLR 2015
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Encoder-Decoder for Machine Translation with Attentiory:: sy

Compute the alignment scores
e, = fu(s.h) f, - couple of dense layers

Compute the context as a linear combination of
intermediate hidden states
cl = El al,( < h(

Decoder: s, = D(y,,,C,)

All these operations are differentiable!
Attention is learned using backprop!!

[START]

Neural Machine Translation with aligning by Bahdanau et al. ICLR 2015
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Encoder-Decoder for Machine Translation with Attentiory:: sy

4 4 t
&
N
3 3 4
[ lsoftmax
€21 ©2 e

B
Q‘\
A\

(=]

[START]

Neural Machine Translation with aligning by Bahdanau et al. ICLR 2015
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o Employs a different context at each time step of decoding
o No more bottleneck-ing of the input

o Decoder can ‘attend’ to different portions of the input at each time
step
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Computing Attention
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o Decoder doesn’t consider the h; to be an ordered set

o This architecture can be exploited to process a set of inputs h;
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Figure 2. Attention over time. As the model generates each word, its attention changes to reflect the relevant parts of the image. “soft”
(top row) vs “hard” (bottom row) attention. (Note that both models generated the same captions in this example.)
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A woman is throwing a frisbee in a park. A dog is standing on a hardwood floor. A stop sign is on a road with a
mountain in the background.

A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.

Show Attend and Tell by Xu et al. 2015

Dr. Konda Reddy Mopuri dl - 14/ Encoder-Decoder Models & Attention 52


https://arxiv.org/pdf/1502.03044.pdf

