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Sequence-to-sequence Models

I/p is a sequence: X1, X2, . . . , XN

O/p is a sequence: Y1, Y2, . . . , YM

ASR: Speech i/p → word sequence
Machine Translation: word sequence→ word sequence
Dialog: user statement → system response
Question Answering: Question i/p → Answer
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Sequence-to-sequence Models

No synchrony between X and Y (M , N)

May not even maintain the order of the symbols
O/p symbols may not seem related to i/p
E.g., The check I issued could not be encashed. → Did you check the
balance in your account?
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Language Model



Language Model

Figure: Andrej Karpathy
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https://karpathy.github.io/2015/05/21/rnn-effectiveness/


Language Model

Models the probability of token sequences in the language(of
characters or words)

Can

Compute the probability of a given token sequence
Generate sequences from the distribution of language
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Language Model

p(y1, y2, y3, y4, . . .)

Use Baye’s rule to compute this incrementally
p(y1) · p(y2/y1) · p(y3/Y1, y2) · p(y3/y1, y2, y3) . . .

They perform next token prediction
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Language Model

1 y∗ = argmax P (yt/y1, y2 . . . yt−1)

2 We have an NN (e.g. RNN or LSTM) first consuming the i/p
sequence (yt−1

1 ) → representation for the context
3 Then, predict the probability distribution P (yt/y1, y2 . . . yt−1) over

the vocabulary
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Language Model

Credits: Elena Voita
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Language Model

Credits: TensorFlow
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https://www.tensorflow.org/text/tutorials/text_generation


Language Model

When do we stop?

Add two additional tokens to the vocabulary
<sos>: start of the sequence
<eos>: end of the sequence
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Language Model

Credits: PyTorch
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https://discuss.pytorch.org/t/transformer-mask-doesnt-do-anything/79765


Encoder-Decoder Framework

1 Standard modeling paradigm for sequence-to-sequence tasks

2 Consists of two components: Encoder and Decoder
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Encoder-Decoder Framework

1 Encoder: reads source
sequence to produce its
representation

2 Decoder: uses the source
representation given by the
encoder to infer the target
sequence

Credits: Elena Voita
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Encoder-Decoder Model

1 Language modeling learns p(y), where y = (y1, y2, . . . yn) is a
sequence of tokens

2 Seq2Seq need to model the conditional probability p(y/x) of a
sequence y given a sequence x (source or context)

3 Note that x need not be a sequence always (e.g. image in captioning)
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Encoder-Decoder Model

1 Hence, Seq2Seq tasks can be modelled as conditional language
models

Credits: Elene Voita
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Encoder-Decoder Model

1 Basis for a lot of applications
Image (or video) captioning
Textual entailment
Machine translation
Transliteration
Document summarization
VQA: Visual Question Answering
Video classification
Chatbot for dialog

2 Let’s consider machine translation...
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Encoder-Decoder Model

Simplest model is having two RNNs

Credits: Simeon Kostadinov
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https://towardsdatascience.com/understanding-encoder-decoder-sequence-to-sequence-model-679e04af4346


Encoder-Decoder for Machine Translation

Sequence to sequence learning by Sutskever et al. NeurIPS 2014
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https://arxiv.org/abs/1409.3215


Encoder-Decoder for Machine Translation

Hope is that

Final encoder state ‘encodes’ all the information about the source
This vector is sufficient for the decoder to generate the target sentence
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Encoder-Decoder for Machine Translation

Representations of sentences with similar meaning but different
structure are close!

Sequence to sequence learning by Sutskever et al. NeurIPS 2014
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Encoder-Decoder for Machine Translation

Sequence to sequence learning by Sutskever et al. NeurIPS 2014
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https://arxiv.org/abs/1409.3215


Encoder-Decoder for Machine Translation

1 Encoder got only a single vector to encode the entire source sequence

2 Harsh compression, may lead to encoder forgetting something!
3 Different information may be relevant for the decoder at different

time steps
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Sequence to sequence learning by Sutskever et al. NeurIPS 2014
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https://arxiv.org/abs/1409.3215


Encoder-Decoder for Machine Translation with Attention
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Encoder-Decoder for Machine Translation with Attention

Neural Machine Translation with aligning by Bahdanau et al. ICLR 2015
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https://arxiv.org/abs/1409.0473
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Encoder-Decoder for Machine Translation with Attention
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Encoder-Decoder for Machine Translation with Attention

Neural Machine Translation with aligning by Bahdanau et al. ICLR 2015
Dr. Konda Reddy Mopuri dl - 14/ Encoder-Decoder Models & Attention 40
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Encoder-Decoder for Machine Translation with Attention

Employs a different context at each time step of decoding

No more bottleneck-ing of the input
Decoder can ‘attend’ to different portions of the input at each time
step

Neural Machine Translation with aligning by Bahdanau et al. ICLR 2015
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Encoder-Decoder for Machine Translation with Attention

Computing Attention
(Credits: Elene Voita)
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Encoder-Decoder for Machine Translation with Attention

Neural Machine Translation with aligning by Bahdanau et al. ICLR 2015
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Encoder-Decoder for Machine Translation with Attention

Decoder doesn’t consider the hi to be an ordered set

This architecture can be exploited to process a set of inputs hi
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Image captioning using RNNs with Attention

Show Attend and Tell by Xu et al. 2015
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https://arxiv.org/pdf/1502.03044.pdf
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